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Proof of Lemma 4.1. Let 1 > � > 0 and � > 0, then �p C 2
p

.1 � �/p� �
� increases with respect to p > 0. Further more, if p D �=.1 � �/, then
�p C 2

p
.1 � �/p� � � D �=.1 � �/. Therefore if p � �=.1 � �/, then

�p C 2
p

.1 � �/p� � � � �=.1 � �/ > 0. On the other hand if p � �=.1 � �/,

then p �
�
�p C 2

p
.1 � �/p� � �

�
D
�p

.1 � �/p � p
�
�2 � 0, therefore p �

�p C 2
p

.1 � �/p� � �. ut
Proof of Lemma 4.2. Let 1 > � > 0 and � > 0. Define x � p

p and
a � p

� and restate the expression �p � 2
�p

1 C � � p
1 � �

	p
p� as

�x2 � 2
�p

1 C � � p
1 � �

	
ax with x > 0 and a > 0. The solutions to

the quadratic equation �x2 � 2
�p

1 C � � p
1 � �

	
ax D 0 for x are 0 and

2
�p

1 C � � p
1 � �

	
a=�. Therefore if x > 2

�p
1 C � � p

1 � �
	

a=�, or

equivalently, x2 > 8
�
1 �p

1 � �2

�
a2=�2, then �x2 � 2

�p
1 C � � p

1 � �
	

ax >

0. Replacing x by
p

p and a by
p

� we obtain (a). The proofs for (b) and (c) are
similar. ut
Proof of Lemma 4.3. Let 1 > � > 0 and � > 0, then we have

�p
1 C � �p

1 � �
�2

> 0 , 1 �p
1 C �

p
1 � � > 0

, 1 C � �p
1 C �

p
1 � � > �

, .1 C �/
�p

1 C � �p
1 � �

�2

> �2

,
�p

1 C � �p
1 � �

�2

=�2 > 1=.1 C �/

, 8
�
1 �

p
1 � �2

�
�=�2 > 4�=.1 C �/
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Also we have

�p
1 C � �p

1 � �
�2

> 0 , 0 >
p

1 C �
p

1 � � � 1

, � >
p

1 C �
p

1 � � � .1 � �/

, �2 > .1 � �/
�p

1 C � �p
1 � �

�2

, 1=.1 � �/ >
�p

1 C � �p
1 � �

�2

=�2

, 4�=.1 � �/ > 8
�
1 �

p
1 � �2

�
�=�2

ut
Proof of Lemma 4.4. Let � > 0 and � > 0. If p > 4�=.1C�/, then 2

p
.1 C �/p��

� > 4� � � D 3� > 0. ut
Proof of Lemma 4.5. Let � > 0 and � > 0. Define x � p

p and a � p
� and

restate expression p � 2
p

.1 C �/p� C � as x2 � 2ax
p

1 C � C a2 where x > 0

and a > 0. The solutions to the quadratic equation x2 � 2ax
p

1 C � C a2 D 0 for
x are

�p
1 C � � p

�
	

a and
�p

1 C � C p
�
	

a. Therefore if
�p

1 C � C p
�
	

a >

x >
�p

1 C � � p
�
	

a, or equivalently,
�
1 C 2� C 2

p
�.1 C �/

�
a2 > x2 >�

1 C 2� � 2
p

�.1 C �/
�

a2, then 0 > x2 � 2ax
p

1 C � C a2. Replacing x by
p

p

and a by
p

� we obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 4.6. Let � > 0 and � > 0. Note that

p
1 C � C p

� >
p

1 C � ) 2=
p

1 C � > 1=
p

1 C � > 1=
�p

1 C � C p
�
�

, 2=.1 C �/ >
p

1 C � � p
�

, 4=.1 C �/ >
�p

1 C � � p
�
�2

, 4�=.1 C �/ >
�
1 C 2� � 2

p
�.1 C �/

�
�

ut
Proof of Lemma 4.7. Let 4=5 > � > 0 and � > 0, then we have

4� � 5�2 > 0 , 2
p

�.1 � �/ > �

, 1 C 2
p

�.1 � �/ > 1 C �

,
�p

1 � � C p
�
�2

>
�p

1 C �
�2
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, p
1 � � C p

� >
p

1 C �

, p
1 � � >

p
1 C � � p

�

, p
1 � �

�p
1 C � C p

�
�

> 1

,
�
1 C 2� C 2

p
�.1 C �/

�
� > �=.1 � �/

and we obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 4.8. Let 4=5 > � > 0 and � > 0, then we have

9.1 � �/ > 1 C � , 3
p

1 � � >
p

1 C �

, 4
p

1 � � >
p

1 C � Cp
1 � �

, 2
p

1 � �
�p

1 C � �p
1 � �

�
> �

, 4.1 � �/
�p

1 C � �p
1 � �

�2

> �2

, 8
�
1 �

p
1 � �2

�
�=�2 > �=.1 � �/

and we obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 4.13. Let 4=5 > � > 0 and � > 0. First we prove (a)
and (b) together. According to Lemma 4.8 part (a), p3 > p2, therefore
p3 D �p3 C .1 � �/p3 > �p3 C .1 � �/

p
p2p3 > �p2 C .1 � �/p2 D p2.

Next we prove (c). According to Lemma 4.8 part (a), p3 > p2, therefore
2�
�p

p3 � p
p2

	
=
p

p2 > 0 ) �
1 C 2�

�p
p3 � p

p2

	
=
p

p2

	
p3 > p3. Finally

we prove (d). According to Lemma 4.3, we have 4p2 > p3, therefore
2
p

p2 >
p

p3 , p
p2 >

p
p3 � p

p2 , 1 >
�p

p3 � p
p2

	
=
p

p2. Therefore
.1 C 2�/p3 >

�
1 C 2�

�p
p3 � p

p2

	
=
p

p2

	
p3. ut

Proof of Lemma 4.14. Let � > 0 and � > 0. Define x � p
r and a �p

� and the expression r � 2
p

.1 C 2�/r�=.1 C �/ C � can be restated as
x2 � 2ax

p
.1 C 2�/=.1 C �/ C a2 with x > 0 and a > 0. The solutions

to the quadratic equation x2 � 2ax
p

.1 C 2�/=.1 C �/ C a2 D 0 for x
are

�p
1 C 2� � p

�
	

a=
p

1 C � and
�p

1 C 2� C p
�
	

a=
p

1 C �. Thus if�p
1 C 2� C p

�
	

a=
p

1 C � > x >
�p

1 C 2� � p
�
	

a=
p

1 C �, or equivalently,

if
�
1 C 3� C 2

p
�.1 C 2�/

�
a=.1 C �/ > x2 >

�
1 C 3� � 2

p
�.1 C 2�/

�
a=.1 C

�/, then 0 > x2 � 2ax
p

.1 C 2�/=.1 C �/ C a2. Replacing x by
p

r and a by
p

� we
obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 4.15. Let 1 > � > 0 and � > 0, and we have

p
1 C � >p

1 � � and
p

1 C 2� >
p

�, therefore we have 2
p

1 C � >
p

1 C � C
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p
1 � � and 2

p
1 C 2� >

p
1 C 2� C p

�. By multiplying these inequalities
4
p

1 C 2�
p

1 C � >
�p

1 C 2� C p
�
	 �p

1 C � C p
1 � �

	
. By multiply-

ing
�p

1 C � � p
1 � �

	
and dividing 2�

p
1 C � on both sides we have

2
p

1 C 2�
�p

1 C � � p
1 � �

	
=� >

�p
1 C 2� C p

�
	
. By squaring both sides

.1 C 2�/p3 >
�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1 C �/. ut

Proof of Lemma 4.16. Note that f .x/ is continuous and differentiable over interval�p
p2;

p
p3



:

df .x/

dx
D �2�x � p

p2

�
.1 � 2�/ � r

x2

�
and

d2f .x/

dx2
D �2� � 2r

p
p2

x3
< 0

df .x/

dx

ˇ̌̌
ˇ
xDp

p2

D �p
p2 C rp

p2

D 1p
p2

.r � p2/

df .x/

dx

ˇ̌̌
ˇ
xDp

p3

D �p
p2 � 2�.

p
p3 � p

p2/ C r
p

p2

p3

D
p

p2

p3

.r � r2/

If r 2 .0; p2�, then f .x/ is decreasing over
�p

p2;
p

p3



, therefore x� D p

p2. If
r � r2, then f .x/ is increasing over

�p
p2;

p
p3



, therefore x� D p

p3. If r 2 .p2; r2/,
then f .x/ is increasing in the neighborhood above x D p

p2 and decreasing in the
neighborhood below x D p

p3. Also note that d2f .x/=dx2 < 0, therefore x� 2�p
p2;

p
p3

	
that satisfies the first order condition

df .x/

dx

ˇ̌
ˇ̌
xDx�

D 0 ) 2�
�
x�	3 C .1 � 2�/

p
p2

�
x�	2 � r

p
p2 D 0 (A.1)

which is a cubic equation. According to the general formula for roots of cubic
equation, x� D p

pcu 2 �pp2;
p

p3

	
. ut

Proof of Lemma 4.17. Note that f .x/ is continuous and differentiable for x � p
p3:

df .x/

dx
D �p

p1

�
1 C 2� � r

x2

�
and

d2f .x/

dx2
D �2r

p
p1

x3
< 0

df .x/

dx

ˇ̌
ˇ̌
xDp

p3

D
p

p1

p3

.r � r3/ and lim
x!C1

df .x/

dx
D �.1 C 2�/

p
p1 < 0

If r 2 .0; r3�, then f .x/ is decreasing for x � p
p3, therefore x� D p

p3. If r > r3,
then f .x/ is increasing in the neighborhood above x D p

p3 and decreasing when x
approaches C1. Also note that d2f .x/=dx2 < 0, therefore x� >

p
p3 that satisfies

first order condition df .x/=dxjxDx� D 0 ) x� D p
r=.1 C 2�/. ut
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Proof of Lemma 4.22. Let � > 1=3 and � > 0. Note that

3� > 1 , 2
p

� >
p

1 C �

, p
1 C � > 2

�p
1 C � � p

�
�

, .1 C �/
�p

1 C � C p
�
�2

> 4

,
�
1 C 2� C 2

p
�.1 C �/

�
� > 4�=.1 C �/

ut
Proof of Lemma 4.25. Note that f .x/ is continuous and differentiable for x � p

p4:

df .x/

dx
D �p

p1

�
1 C 2� � r

x2

�
and

d2f .x/

dx2
D �2r

p
p1

x3
< 0

df .x/

dx

ˇ̌
ˇ̌
xDp

p4

D
p

p1

p4

.r � r4/ and lim
x!C1

df .x/

dx
D �.1 C 2�/

p
p1 < 0

If r 2 .0; r4�, then f .x/ is decreasing for x � p
p4, therefore x� D p

p4. If r > r4,
then f .x/ is increasing in the neighborhood above x D p

p4 and decreasing when x
approaches C1. Note that d2f .x/=dx2 < 0, therefore x� >

p
p4 satisfies first order

condition df .x/=dxjxDx� D 0 ) x� D p
r=.1 C 2�/. ut

Proof of Lemma 4.26. Let � > 0 and � > 0, then we have

p
�
�p

1 C 2� �p
1 C �

�
C � > 0 , 0 > �p

�
p

1 C 2� C p
�
p

1 C � � �

, p
1 C 2�

p
1 C � >

�p
1 C 2� C p

�
� �p

1 C � � p
�
�

,
�p

1 C � C p
�
�p

1 C 2� >
�p

1 C 2� C p
�
�

=
p

1 C �

by squaring both sides we have .1C2�/p4 >
�
1 C 3� C 2

p
�.1 C 2�/

�
�=.1C�/.ut

Proof of Lemma 5.2. Let 1 > � > 0 and � > 0. Define x � p
p and a � p

� and
restate the expression �p=2 C 2

p
.1 � �/p� � � as �x2=2 C 2ax

p
.1 � �/ � a2

with x > 0 and a > 0. The solutions to the quadratic equation �x2=2 C
2ax

p
.1 � �/ � a2 D 0 for x are 0 > �2

�p
1 � �=2 Cp

1 � �
�

a=� and

2
�p

1 � �=2 �p
1 � �

�
a=� > 0. Therefore if 2

�p
1 � �=2 �p

1 � �
�

a=� >

x > 0, or equivalently, 4
�p

1 � �=2 �p
1 � �

�2

a2=�2 > x2 > 0, then 0 >
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�x2=2 C 2ax
p

.1 � �/ � a2. Replacing x by
p

p and a by
p

� we obtain (a). The
proofs for (b) and (c) are similar. ut
Proof of Lemma 5.3. Let 1 > � > 0 and � > 0, then we have

0 > �2 � 2� , �2 � 4� C 4 > 2�2 � 6� C 4

, .2 � �/2 > 4.1 � �=2/.1 � �/

, 2 � � > 2
p

1 � �=2
p

1 � �

, � > 2
p

1 � �=2
p

1 � � � 2.1 � �/

, 1=
p

1 � � > 2
�p

1 � �=2 �p
1 � �

�
=�

, �=.1 � �/ > 4
�p

1 � �=2 �p
1 � �

�2

�=�2

ut
Proof of Lemma 5.4. Let 2 > � > 0 and � > 0. Define x � p

p and a � p
�

and restate the expression .1 � �=2/p � 2
p

p� C � as .1 � �=2/x2 � 2ax C a2

with x > 0 and a > 0. The solutions to the quadratic equation .1 � �=2/x2 �
2ax C a2 D 0 for x are

p
2a=

�p
2 Cp

�
�

> 0 and
p

2a=
�p

2 �p
�
�

> 0.

Therefore if
p

2a=
�p

2 �p
�
�

> x >
p

2a=
�p

2 Cp
�
�

, or equivalently,

2a2=
�
2 C � � 2

p
2�
�

> x2 > 2a2=
�
2 C � C 2

p
2�
�

, then 0 > .1 � �=2/x2 �
2ax C a2. Replacing x by

p
p and a by

p
� we obtain (a). The proofs for (b) and (c)

are similar. ut
Proof of Lemma 5.5. Let � > 0 and � > 0, then 1 Cp

2� > 0 , 2 Cp
2� > 1 ,p

2 > 1=
�p

2 Cp
�
�

, 4� > 2�=
�
2 C � C 2

p
2�
�

. ut
Proof of Lemma 5.6. Let 8=9 > � > 0 and � > 0, then we have

8� � 9�2 > 0 , 2
p

2� > 3�

, 2 � 2� > 2 C � � 2
p

2�

, p
2
p

1 � � >
p

2 �p
�

, p
2=
�p

2 �p
�
�

> 1=
p

1 � �

, 2�=
�
2 C � � 2

p
2�
�

> �=.1 � �/

and we obtain (a). The proofs for (b) and (c) are similar. ut
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Proof of Lemma 5.7. Let 1 > � > 0 and � > 0. Define x � p
p and a � p

�

and restate expression �p=2 � 2
�
1 �p

1 � �
�p

p� as �x2=2 � 2
�
1 �p

1 � �
�

ax

with x > 0 and a > 0. The solution to the quadratic equation �x2=2 �
2
�
1 �p

1 � �
�

ax D 0 for x are 0 and 4
�
1 �p

1 � �
�

a=� > 0. Therefore if

4
�
1 �p

1 � �
�

a=� > x > 0, or equivalently, 16
�
2 � � � 2

p
1 � �

�
a2=�2 >

x2 > 0, then 0 > �x2=2 � 2
�
1 �p

1 � �
�

ax. Replacing x by
p

p and a by
p

� we

obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 5.8. Let 8=9 > � > 0 and � > 0, then we have

0 > 9�2 � 8� , 16.1 � �/ > 9�2 � 24� C 16

, 4
p

1 � � > 4 � 3�

, 4
�
1 �p

1 � �
�

=� > 1=
p

1 � �

, 16
�
2 � � � 2

p
1 � �

�2

�=�2 > �=.1 � �/

and we obtain (a). The proofs for (b) and (c) are similar. ut
Proof of Lemma 5.9. Let 1 > � > 0 and � > 0, then 1 >

p
1 � � , � >

2
p

1 � � � 2 C 2� , 4�=.1 � �/ > 16
�
2 � � � 2

p
1 � �

�
�=�2. Also note

that 1 >
p

1 � � , 2 � � � 2
p

1 � � > 0 , 2
�
1 �p

1 � �
�

> � ,
16
�
2 � � � 2

p
1 � �

�
�=�2 > 4�. ut

Proof of Lemma 5.14. Let 8=9 > � > 0 and � > 0. According to Lemma 5.8
and 5.9, 4p1 > p2 > p1, therefore:

2
p

p1 >
p

p2 , p
p1 >

p
p2 �p

p1 > 0

, 1 >
�p

p2 �p
p1

�
=
p

p1

, � > �
�p

p2 �p
p1

�
=
p

p1

, 1 > .1 � �/ C �
�p

p2 �p
p1

�
=
p

p1

, p2 > .1 � �/p2 C �p2

�p
p2 �p

p1

�
=
p

p1

Since �p2 C .1 � �/
p

p1p2 � �p2

p
p2=2

�p
p2 �p

p1

	 D .1 � �/
p

p1p2 C
�p2

�p
p2 �p

4p1

	
=2
�p

p2 �p
p1

	
. Since 4p1 > p2 > p1, therefore we

have .1 � �/p2 > .1 � �/
p

p1p2 and �p2

�p
p2 �p

p1

	
=
p

p1 > 0 >
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�p2

�p
p2 �p

4p1

	
=2
�p

p2 �p
p1

	
. Thus .1 � �/p2 C �p2

�p
p2 �p

p1

	
=
p

p1 >

�p2 C.1��/
p

p1p2 ��p2

p
p2=2

�p
p2 �p

p1

	
. Therefore we obtain (a). According

to Lemma 5.8, p2 > p1, therefore .1 � �/ .p2 � p1/ C �p2

�p
p2 �p

p1

	
=
p

p1 >

0 , .1 � �/p2 C �p2

�p
p2 �p

p1

	
=
p

p1 > .1 � �/p1 D �. Therefore we
obtain (b). ut
Proof of Lemma 5.15. Note that f .x/ is continuous and differentiable over interval�p

p1;
p

p2



:

df .x/

dx
D ��x �p

p1

�
.1 � 2�/ � r

x2

�
and

d2f .x/

dx2
D �� � 2r

p
p1

x3
< 0

df .x/

dx

ˇ̌
ˇ̌
xDp

p1

D �.1 � �/
p

p1 C rp
p1

D 1p
p1

.r � �/

df .x/

dx

ˇ̌̌
ˇ
xDp

p2

D ��
p

p2 � .1 � 2�/
p

p1 C r
p

p1

p2

D
p

p1

p2

.r � r2/

If r 2 .0; ��, then f .x/ is decreasing over
�p

p1;
p

p2



, therefore x� D p

p1. If
r � r2, then f .x/ is increasing over

�p
p1;
p

p2



, therefore x� D p

p2. If r 2 .�; r2/,
then f .x/ is increasing in the neighborhood above x D p

p1 and is decreasing in
the neighborhood below x D p

p2. Also note that d2f .x/=dx2 < 0, therefore x� 2�p
p1;
p

p2

	
that satisfies the first order condition

df .x/

dx

ˇ̌
ˇ̌
xDx�

D 0 ) �
�
x�	3 C .1 � 2�/

p
p1

�
x�	2 � r

p
p1 D 0 (A.2)

which is a cubic equation. According to the general formula for roots of cubic
equation, x� D p

pcu 2 �pp1;
p

p2

	
. ut

Proof of Lemma 5.16. Note that f .x/ is continuous and differentiable for x � p
p2:

df .x/

dx
D �

p
�
�
1 � r

x2

�
and

d2f .x/

dx2
D �2r

p
�

x3
< 0

df .x/

dx

ˇ̌̌
ˇ
xDp

p2

D
p

�

p2

.r � p2/ and
df .x/

dx

ˇ̌̌
ˇ
x!C1

D �
p

� < 0

If r 2 .0; p2�, then f .x/ is decreasing for r � p
p2, therefore x� D p

p2. If r >
p

p2,
then f .x/ is increasing in the neighborhood above x D p

p2. Since f .x/ is decreasing
as x ! C1 and since f .x/ is concave (d2f .x/=dx2 < 0), therefore x� >

p
p2 is

solved from first order condition df .x/=dxjxDx� D 0 ) x� D p
r. ut
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Proof of Lemma 5.18. Let 2 > � � 8=9 and � > 0, then we have

2� � 16=9 , p
2� � 4=3 > 1

, 1 > 2 �p
2�

, p
2=
�p

2 �p
�
�

> 2

, 2�=
�
2 C � � 2

p
2�
�

> 4�

ut
Proof of Lemma 5.21. Note that f .x/ is continuous and differentiable for x � p

p3:

df .x/

dx
D �

p
�
�
1 � r

x2

�
and

d2f .x/

dx2
D �2r

p
�

x3
< 0

df .x/

dx

ˇ̌̌
ˇ
xDp

p3

D
p

�

p3

.r � p3/ and
df .x/

dx

ˇ̌̌
ˇ
x!C1

D �
p

� < 0

If r 2 .0; p3�, then f .x/ is decreasing for x � p
p3, therefore x� D p

p3. If r >
p

p3,
then f .x/ is increasing in the neighborhood above x D p

p3. Since f .x/ is decreasing
as x ! C1 and since f .x/ is concave (d2f .x/=dx2 < 0), therefore x� >

p
p3 is

solved from first order condition df .x/=dxjxDx� D 0 ) x� D p
r. ut

Proof of Lemma 5.23. Let � > 2 and � > 0. Define x � p
p and a � p

� and
restate the expression .1 � �=2/p � 2

p
p� C � as .1 � �=2/x2 � 2ax C a2 with

x > 0 and a > 0. The solutions to the quadratic equation .1 � �=2/x2 � 2ax C
a2 D 0 for x are

p
2a=

�p
2 Cp

�
�

> 0 and 0 >
p

2a=
�p

2 �p
�
�

. Therefore

if
p

2a=
�p

2 Cp
�
�

> x > 0, or equivalently, 2a2=
�
2 C � C 2

p
2�
�

> x2 > 0,

then .1 � �=2/x2 � 2ax C a2 > 0. Replacing x by
p

p and a by
p

� we obtain (a).
The proofs for (b) and (c) are similar. ut
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