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Proof of Lemma4.1. Let 1 > n > 0 and A > 0, then np + 2./(1 — n)pA —
A increases with respect to p > 0. Further more, if p = A/(1 — n), then

np + ZW — A = A/(1 = n). Therefore if p > A/(1 — n), then
mp + 2/ (I=npr —A = A/(1 —n) > 0. On the other hand if p > 1/(1 — 1),
then p — (np—l—Zm—/\) = (m- ﬁ)z > 0, therefore p >
np + 24/ (1 —mpA — A O
Proof of Lemma4.2. Let 1 > n > 0 and A > 0. Define x = ,/p and

a = +/A and restate the expression np — 2(«/1—{— —«/l—r)) VpA o as
nx? — 2(«/1—{— —«/1—n)ax with x > 0 and a > 0. The solutions to

the quadratic equation nx*> — 2(./1 +n—41- r)) ax = 0 for x are 0 and
2(«/1—}— —./l—n)a/n. Therefore if x > 2(«/1—}— —«/l—n)a/n, or

equivalently, x> > 8 (1 — 1= 172) a*/n?, then nx? =2 (VT+n— V/T—1)ax >

0. Replacing x by ,/p and a by VA we obtain (a). The proofs for (b) and (c) are
similar. O

Proof of Lemma 4.3. Let1 > n > 0and A > 0, then we have

(ViFn-vin) >0 1-VITa/T—g>0
S l+n—yI+n/1—n>n
@(1+n)(/r—m>2>n2
& (VIFn-VI=n) /= 1/0+0)
<:>8(1—\/1——r;2)/\/772>4/1/(1+n)
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Also we have

(VIFn-vi—n) >060> yTiny/T-p-1
&n>VI+n/T-n-(0-n)
s> (- (ViTa-yT-n)
& 1/(1-n > (ﬁ—ﬂ)z/nz
©4A/(1—n)>8(1—\/1——;72)/x/n2

a

Proof of Lemma 4.4. Letn > 0and A > 0.Ifp > 41 /(1+ 1), then 2,/(1 + n)pA —
A>4L -1 =31>0. |

Proof of Lemma 4.5. Let n > 0 and A > 0. Define x = /p and a = VA and

restate expression p — 2./(1 + n)pA + A as x> — 2ax/T + n + a®> where x > 0
and a > 0. The solutions to the quadratic equation x> — 2ax/T + n + a*> = 0 for

xare (T+n— /) aand (VT+ 7+ /1) a. Therefore if (T+ 1+ /7)a >
x > («/1 + 71— /1) a, or equivalently, (1 +2n4+24/n(1 + n)) a > x* >

(1 +2n—=2/n(1 + n)) a?, then 0 > x* — 2ax/T + n + a*. Replacing x by ./p

and a by VA we obtain (a). The proofs for (b) and (c) are similar. O
Proof of Lemma 4.6. Letn > 0 and A > 0. Note that

I+ 0> VT =2/yTHn> YT+ > 1/ (VT+0+ Vi)
&2/(+n)>Vi+n—-n
s 4/ > (Vitn-va)
@41/(1+n)>(1+2n—2\/m)x

Proof of Lemma 4.7. Let4/5 > n > 0and A > 0, then we have

dn—5° >0 2/n(1—n)>1n
S 14+2yn(l—n)>14n

o (Vima+va) > (Vi)
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S J1-n+n>+1+7
o JI=n>J1+n1-n
Ty (VT+0+ i) > 1
& (14 2042/ +m) 2> 2/(1=n)

and we obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.8. Let4/5 > n > 0and A > 0, then we have
M= >1+n&3/1—yp> 1+
S4/T—n>J1+n+/1-7
©2\/1—n(\/1+n—\/1—n) >
s 40— (VITn-vizn) >
& 8(1=vT=n2) 2/ > 2/(1 =)

and we obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.13. Let 4/5 > n > 0 and A > 0. First we prove (a)
and (b) together. According to Lemma 4.8 part (a), p3 > p», therefore

py = nps+ (L—mps > nps + (1 —n)/paps > np2 + (1 — n)p2 = pa.
Next we prove (c). According to Lemma 4.8 part (a), p3 > p», therefore

2 (V3= /p2) /P2 > 0 = (1+21(yp5— yP2) //P2)p3 > ps. Finally

we prove (d). According to Lemma 4.3, we have 4p, > ps, therefore
2P > D3 & P2 > 3 — P2 & 1 > (p3— P2) //P2. Therefore
(1+2nps > (1421 (P35 — /P2) / /P2) P5- O
Proof of Lemma 4.14. Let n > 0 and A > 0. Define x = . /r and a =
VA and the expression r — 2/(1 +2n)rA/(1+n) + A can be restated as

x> — 2ax/(1 +2n)/(1 +1n) + a*> with x > 0 and a > 0. The solutions
to the quadratic equation x> — 2ax /(1 +2n)/(1+n) + o> = 0 for x

are («/1 +2n— ﬁ)a/«l +1n and («/1 +2n+ \/ﬁ)a/«/l +n. Thus if
(WT+2n+ yn)a/JT+n > x> (VT+2n— n)a//T+ 1, or equivalently,
if (1 v 342000+ 2n)) a/(1+1)>2> (1 rap—2/n0 + 277)) a/(1 +
1), then 0 > x> —2ax+/(1 + 21)/(1 + n) + a*. Replacing x by /7 and a by ~/A we

obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.15. Let 1 > n > 0 and A > 0, and we have /1+1n >
J1—nand /1+2n > /5, therefore we have 2/1+n > JI+n +




118 Appendix

VT—nand 2/T+2n > /1+2n + /7. By multiplying these inequalities
AVT+2pyT+n > (VT+2n+ /1) (VT+n++/T=n). By multiply-
ing (VT+7n—+/T—=7n) and dividing 2n/T+7 on both sides we have
2VT+2n (VT+0—T=1n)/n > (VT+2n+ /7). By squaring both sides

(U4 2mps > (14 37+ 2/ +2) A/(1 + ). 0
Proof of Lemma 4.16. Note that f(x) is continuous and differentiable over interval
(VP2 /P3]:
df(x) r dzf(x) 2rf
T —2nx — /P2 ((1 —2n) — —2) and =-2n—
df (x)
=Pt ——==——(r—p)
dx = /m J_ J_
df (x) P2 _ P2
g - = (r—nr)
X =yps p3 p3

If r € (0.p], then f(x) is decreasing over [,/p2. \/p3], therefore x* = /p;. If
r > ry, then f(x) is increasing over [\/p_, \/p_;], therefore x* = JP3-1fr € (p2, 1),
then f(x) is increasing in the neighborhood above x = ,/p; and decreasing in the
neighborhood below x = /p3. Also note that d’f(x)/dx* < 0, therefore x* €
(\/P2. /P3) that satisfies the first order condition

&)

- =0=2(*) + (=20 yp () —rypr =0 (A1)

*

X=X

which is a cubic equation. According to the general formula for roots of cubic
equation, x* = /pes € (/P2 /P3)- O

Proof of Lemma 4.17. Note that f(x) is continuous and differentiable for x > ,/p3:

T Py g B 2
__\/_(1+277_—2) and e = _ 3 ! <0

o, m T

I (r=rs) and lim == = (1 +2i)/pi <0

If r € (0, 73], then f(x) is decreasing for x > ,/p3, therefore x* = /p3. If r > r3,
then f (x) is increasing in the neighborhood above x = ,/p3 and decreasing when x
approaches +oc. Also note that d°f(x)/dx* < 0, therefore x* > ,/p3 that satisfies

first order condition df (x)/dx|,=x = 0 = x* = /r/(1 4+ 27). |
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Proof of Lemma 4.22. Letn > 1/3 and A > 0. Note that
>1e2y7>/1+1
& VJ1+n>2 (/ﬁ— ﬁ)
ot (ViTnt i) >4
& (14204 2/ + M)A > 44/(1+7)

a

Proof of Lemma 4.25. Note that f(x) is continuous and differentiable for x > /ps:

df(x) r d*f(x) _2rypr

T ——@(l+2n—;) and I <0

df (x) VP . df(x)

A = VP d lim =2 = —(1+2 0
dx | = pe T i g = A amp <

If r € (0, r4], then f(x) is decreasing for x > ,/pa, therefore x* = /py. If r > 1y,
then f'(x) is increasing in the neighborhood above x = ,/p4 and decreasing when x
approaches +oo. Note that d%f(x) /dx* < 0, therefore x* > /ps satisfies first order

condition df (x) /dx|,=» = 0 = x* = /r/(1 + 27n). |
Proof of Lemma 4.26. Letn > 0 and A > 0, then we have

I(VTF20=VTH0) 41> 0 0> —/iyT+ 20+ /iyT+n-1
& VT+myT+n> (Vi+2n+ i) (VI+1- Vi)
& (Vitn+yn) Vi+om> (Vi+2m+ i) /V/T+0

by squaring both sides we have (1+2n)ps > (1 +3n+2/nl + 277)) A/(1+4n).0

Proof of Lemma 5.2. Let 1 > 7 > 0 and A > 0. Define x = \/p anda = VA and
restate the expression 7p/2 + 21/(1 —J)pA — A as 7x?/2 + 2ax+/(1 —7) — a®

with x > 0 and @ > 0. The solutions to the quadratic equation 7x*>/2 +

2ax /(I —7) —a® = 0 for x are 0 > —2<\/1—ﬁ/2+ \/l—ﬁ) a/7 and

2(\/1 /2 — /1 —ﬁ) a/f > 0. Therefore ifz(\/l —/2— /1 —ﬁ) a/i >
2

x > 0, or equivalently, 4(\/l—ﬁ/2— \/1—ﬁ> /7 > x> > 0, then 0 >
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7x2/2 + 2axy/(1 —7) — a®. Replacing x by ,/p and a by /A we obtain (a). The
proofs for (b) and (c) are similar. O

Proof of Lemma 5.3. Let1 > 7% > 0and A > 0, then we have
0>7 -2 &7 —47+4>27 —67+4
& Q2-7)7>4(01-7/2(1-7)
& 2-7>2/1-7/2/1-7
& 7>2/1-7/2/T-7-2(1-7)
S 1/VT=7>2(VI=7/2= V1=7) /7

&2/ >4 (VT2 VT-7) /7

a

Proof of Lemma 5.4. Let2 > 7 > 0 and A > 0. Define x = ,/p and a = A
and restate the expression (1 — 77/2)p — 24/pA + A as (1 — 7j/2)x*> — 2ax + a?
with x > 0 and @ > 0. The solutions to the quadratic equation (1 — 7j/2)x> —

2ax + a* = 0 for x are +/2a/ (ﬁ—i— ﬁ) > 0 and ﬁa/(ﬁ— ﬁ) > 0.
Therefore if +/2a/ (ﬁ— ﬁ) > x > 2a/ (\/5 + ﬁ), or equivalently,
242/ (2 +h— 2\/ﬁ) > 2 > 242/ (2 . 2\/ﬁ), then 0 > (1 — 7/2)x* —
2ax + a>. Replacing x by ,/p and a by /A we obtain (a). The proofs for (b) and (c)

are similar. O
Proof of Lemma 5.5. Let7] >0and A > 0,then 1+ /27 >0 2+ /21> 1 &
x/§>l/<\/§+ﬁ>©4A>2/1/(2+ﬁ+2,/2ﬁ). o

Proof of Lemma 5.6. Let 8/9 > 7 > 0 and A > 0, then we have
87— 9% > 0 & 2/27 > 37
S2-21>2+7-2V21
e V217> V2- 7
& V2/ (V2= VA) > VT
s 21/ (2+ﬁ—2\/2_ﬁ) > /(1 =7)

and we obtain (a). The proofs for (b) and (c) are similar. O
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Proof of Lemma 5.7. Let 1 > 77 > 0 and A > 0. Define x = ,/pand a = Vi

and restate expression 7jp/2 — 2 (1 - /1 —ﬁ) \/ﬂas /2 -2 (l — \/1Tﬁ) ax

with x > 0 and @ > 0. The solution to the quadratic equation 7x*>/2 —
2 (1 V1 —ﬁ) ax = 0 for x are 0 and 4(1 /I —ﬁ) a/fi > 0. Therefore if
4(1—,/1—ﬁ)a/ﬁ > x > 0, or equivalently, 16(2—ﬁ—2 1—ﬁ)a2/ﬁ2 >

x> > 0,then 0 > 7x?/2 —2 (1 -1 —ﬁ) ax. Replacing x by ./p and a by VA we
obtain (a). The proofs for (b) and (c) are similar. |

Proof of Lemma 5.8. Let8/9 > 7 > 0 and A > 0, then we have
0> 97" — 87 < 16(1—7) > 97" — 247 + 16
S 4/1-71>4-37
<:>4(1—\/1—ﬁ)/ﬁ>1/\/1—ﬁ
2

& 16(2—ﬁ—2\/1—ﬁ) AT > AJ(1—7)
and we obtain (a). The proofs for (b) and (c) are similar. O
Proof of Lemma 5.9. Let 1 > 77 > 0Oand A > O, then 1 > /1—-7 & 7 >
2/T-F—24+27 & 4/)(1 -7) > 16(2—ﬁ—2,/1—ﬁ)x/ﬁ2. Also note
that 1 > JT-5 & 2-7-2/1-7 > 0 & 2(1—,/1—ﬁ) > 7 &
16(2—ﬁ—2,/1—ﬁ)k/ﬁ2 > 41 O

Proof of Lemma 5.14. Let 8/9 > 7 > 0 and A > 0. According to Lemma 5.8
and 5.9, 4p, > p, > p,, therefore:

2P > VP2 & VP > VP2 — VP > 0
1> (Vh—vh) /v
7> (Vh— Vi) /i
e 1>0-m+7 (Ve - V) /i
& B> (=05 + 0, (VB — VP1) / Vi
Since 7p, + (1= MVPiP> = WV/P2/2 (VP2 = VP1) = (1= DVpip, +

0, (VP2 — v491) /2 (D, — /P1)- Since 4p, > p, > py, therefore we
have (1 —mp, > (I = Mypip, and WP, (VP2 = VP1) /VP1 > 0 >
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P2 (VP2 = VA1) /2 (VP2 = V/P1)- Thus (L =1)p, + 72 (P2 = VP1) / V/P1 >
Py +(1=1)/D1P,— P> \/_/2 (\/1_7_2 — \/[?1) Therefore we obtain (a). According
to Lemma 5.8, p, > p,, therefore (1 —7) (5, — Py) + 7P, (VP2 — VP1) /D1 >
0 < (1—mp, + 70, (VP—P1)/P1 > (1 —p, = A. Therefore we

obtain (b). O

Proof of Lemma 5.15. Note that f(x) is continuous and differentiable over interval

(V1. VPa:
¥O _ 5 \/;3_1((1—2@—%) andde(zx)z __2r):§;?1<0

dx =R
df (x)
dx

df (x)
dx

-MVP+—=
x=f \/ \/
e V\/l_71=vl_’1
A P P

X=4/P2

If r € (0,A], then f(x) is decreasing over [/p,. v/D,]. therefore x* = /p. If
r > 7,, then f(x) is increasing over [\/]7 , \/ﬂ, therefore x* = \/E Ifre (A, r),
then f(x) is increasing in the neighborhood above x = \/1_7_1 and is decreasing in
the neighborhood below x = \/1_7_2 Also note that d?f(x)/dx* < 0, therefore x* €
(\/ﬁ_ , \/]72) that satisfies the first order condition

(r—72)

)
dx

—0=7(¢)’ + (=205, (x*) = ryp, =0 (A.2)

*

X=X

which is a cubic equation. According to the general formula for roots of cubic
equation, x* = \/p, € (y/D1. v/P2)- O

Proof of Lemma 5.16. Note that f(x) is continuous and differentiable for x > |/p,:

ACY = —\/X(l - )%) and &f () = _Zrﬁ <0

dx dx? X3
&) _ YA 5 ana 4O = VA <0
dx x=p> P> x—>+o0

If r € (0, p,], then f(x) is decreasing for r > \/1_7_ therefore x* = \/1?2 Ifr> \/ﬁ_,
then f(x) is increasing in the neighborhood above x = \/;7_2 . Since f(x) is decreasing
as x — +oo and since f(x) is concave (d*f(x)/dx*> < 0), therefore x* > /p, is
solved from first order condition df (x)/dx|,=xx = 0 = x* = /7. O
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Proof of Lemma 5.18. Let2 > 7 > 8/9and A > 0, then we have
2> 16/9 < 21> 4/3 > 1
<1 >2—\/ﬁ
& V2/ (ﬁ— ﬁ) >2
@2/1/(2+ﬁ—2\/ﬁ)>4k

O
Proof of Lemma 5.21. Note that f(x) is continuous and differentiable for x > \/1_7_3 :

¥ _ ~VA(1-5) and de(zx) __n
X X X

dx d x3
&) =£(r—173) and L = —VA<0
dx x=./P3 P3 x—+o0o

If » € (0, ps], then f(x) is decreasing for x > \/f, therefore x* = \/E Ifr> \/1_7_,
then f(x) is increasing in the neighborhood above x = \/E . Since f(x) is decreasing
as x — +oo and since f(x) is concave (d*f(x)/dx*> < 0), therefore x* > /p; is
solved from first order condition df (x)/dx|,=xx = 0 = x* = /r. |
Proof of Lemma 5.23. Let7 > 2 and A > 0. Define x = ,/p and a = VA and
restate the expression (1 —77/2)p — 2\/p_)t + A as (1 —7/2)x* — 2ax + a* with
x > 0 and @ > 0. The solutions to the quadratic equation (1 — 77/2)x> — 2ax +

a® = 0 for x are v/2a/ («/E+ ﬁ) > 0and 0 > +/2a/ («/5— ﬁ) Therefore
if v2a/ (\/5 + ﬁ) > x > 0, or equivalently, 2a*/ (2 +7+ 2\/ﬁ) > x2 >0,

then (1 —7/2)x> — 2ax + a* > 0. Replacing x by ,/p and a by v/A we obtain (a).
The proofs for (b) and (c) are similar. |
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