Appendix

Proof of Lemma 4.1. Let $1>\eta>0$ and $\lambda>0$, then $\eta p+2 \sqrt{(1-\eta) p \lambda}-$ λ increases with respect to $p>0$. Further more, if $p=\lambda /(1-\eta)$, then $\eta p+2 \sqrt{(1-\eta) p \lambda}-\lambda=\lambda /(1-\eta)$. Therefore if $p \geq \lambda /(1-\eta)$, then $\eta p+2 \sqrt{(1-\eta) p \lambda}-\lambda \geq \lambda /(1-\eta)>0$. On the other hand if $p \geq \lambda /(1-\eta)$, then $p-(\eta p+2 \sqrt{(1-\eta) p \lambda}-\lambda)=(\sqrt{(1-\eta) p}-\sqrt{\lambda})^{2} \geq 0$, therefore $p \geq$ $\eta p+2 \sqrt{(1-\eta) p \lambda}-\lambda$.
Proof of Lemma 4.2. Let $1>\eta>0$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate the expression $\eta p-2(\sqrt{1+\eta}-\sqrt{1-\eta}) \sqrt{p \lambda}$ as $\eta x^{2}-2(\sqrt{1+\eta}-\sqrt{1-\eta}) a x$ with $x>0$ and $a>0$. The solutions to the quadratic equation $\eta x^{2}-2(\sqrt{1+\eta}-\sqrt{1-\eta}) a x=0$ for x are 0 and $2(\sqrt{1+\eta}-\sqrt{1-\eta}) a / \eta$. Therefore if $x>2(\sqrt{1+\eta}-\sqrt{1-\eta}) a / \eta$, or equivalently, $x^{2}>8\left(1-\sqrt{1-\eta^{2}}\right) a^{2} / \eta^{2}$, then $\eta x^{2}-2(\sqrt{1+\eta}-\sqrt{1-\eta}) a x>$ 0 . Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.

Proof of Lemma 4.3. Let $1>\eta>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
(\sqrt{1+\eta}-\sqrt{1-\eta})^{2}>0 & \Leftrightarrow 1-\sqrt{1+\eta} \sqrt{1-\eta}>0 \\
& \Leftrightarrow 1+\eta-\sqrt{1+\eta} \sqrt{1-\eta}>\eta \\
& \Leftrightarrow(1+\eta)(\sqrt{1+\eta}-\sqrt{1-\eta})^{2}>\eta^{2} \\
& \Leftrightarrow(\sqrt{1+\eta}-\sqrt{1-\eta})^{2} / \eta^{2}>1 /(1+\eta) \\
& \Leftrightarrow 8\left(1-\sqrt{1-\eta^{2}}\right) \lambda / \eta^{2}>4 \lambda /(1+\eta)
\end{aligned}
$$

Also we have

$$
\begin{aligned}
(\sqrt{1+\eta}-\sqrt{1-\eta})^{2}>0 & \Leftrightarrow 0>\sqrt{1+\eta} \sqrt{1-\eta}-1 \\
& \Leftrightarrow \eta>\sqrt{1+\eta} \sqrt{1-\eta}-(1-\eta) \\
& \Leftrightarrow \eta^{2}>(1-\eta)(\sqrt{1+\eta}-\sqrt{1-\eta})^{2} \\
& \Leftrightarrow 1 /(1-\eta)>(\sqrt{1+\eta}-\sqrt{1-\eta})^{2} / \eta^{2} \\
& \Leftrightarrow 4 \lambda /(1-\eta)>8\left(1-\sqrt{1-\eta^{2}}\right) \lambda / \eta^{2}
\end{aligned}
$$

Proof of Lemma 4.4. Let $\eta>0$ and $\lambda>0$. If $p>4 \lambda /(1+\eta)$, then $2 \sqrt{(1+\eta) p \lambda}-$ $\lambda>4 \lambda-\lambda=3 \lambda>0$.
Proof of Lemma 4.5. Let $\eta>0$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate expression $p-2 \sqrt{(1+\eta) p \lambda}+\lambda$ as $x^{2}-2 a x \sqrt{1+\eta}+a^{2}$ where $x>0$ and $a>0$. The solutions to the quadratic equation $x^{2}-2 a x \sqrt{1+\eta}+a^{2}=0$ for x are $(\sqrt{1+\eta}-\sqrt{\eta}) a$ and $(\sqrt{1+\eta}+\sqrt{\eta}) a$. Therefore if $(\sqrt{1+\eta}+\sqrt{\eta}) a>$ $x>(\sqrt{1+\eta}-\sqrt{\eta}) a$, or equivalently, $(1+2 \eta+2 \sqrt{\eta(1+\eta)}) a^{2}>x^{2}>$ $(1+2 \eta-2 \sqrt{\eta(1+\eta)}) a^{2}$, then $0>x^{2}-2 a x \sqrt{1+\eta}+a^{2}$. Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.
Proof of Lemma 4.6. Let $\eta>0$ and $\lambda>0$. Note that

$$
\begin{aligned}
\sqrt{1+\eta}+\sqrt{\eta}>\sqrt{1+\eta} & \Rightarrow 2 / \sqrt{1+\eta}>1 / \sqrt{1+\eta}>1 /(\sqrt{1+\eta}+\sqrt{\eta}) \\
& \Leftrightarrow 2 /(1+\eta)>\sqrt{1+\eta}-\sqrt{\eta} \\
& \Leftrightarrow 4 /(1+\eta)>(\sqrt{1+\eta}-\sqrt{\eta})^{2} \\
& \Leftrightarrow 4 \lambda /(1+\eta)>(1+2 \eta-2 \sqrt{\eta(1+\eta)}) \lambda
\end{aligned}
$$

Proof of Lemma 4.7. Let $4 / 5>\eta>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
4 \eta-5 \eta^{2}>0 & \Leftrightarrow 2 \sqrt{\eta(1-\eta)}>\eta \\
& \Leftrightarrow 1+2 \sqrt{\eta(1-\eta)}>1+\eta \\
& \Leftrightarrow(\sqrt{1-\eta}+\sqrt{\eta})^{2}>(\sqrt{1+\eta})^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \sqrt{1-\eta}+\sqrt{\eta}>\sqrt{1+\eta} \\
& \Leftrightarrow \sqrt{1-\eta}>\sqrt{1+\eta}-\sqrt{\eta} \\
& \Leftrightarrow \sqrt{1-\eta}(\sqrt{1+\eta}+\sqrt{\eta})>1 \\
& \Leftrightarrow(1+2 \eta+2 \sqrt{\eta(1+\eta)}) \lambda>\lambda /(1-\eta)
\end{aligned}
$$

and we obtain (a). The proofs for (b) and (c) are similar.
Proof of Lemma 4.8. Let $4 / 5>\eta>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
9(1-\eta)>1+\eta & \Leftrightarrow 3 \sqrt{1-\eta}>\sqrt{1+\eta} \\
& \Leftrightarrow 4 \sqrt{1-\eta}>\sqrt{1+\eta}+\sqrt{1-\eta} \\
& \Leftrightarrow 2 \sqrt{1-\eta}(\sqrt{1+\eta}-\sqrt{1-\eta})>\eta \\
& \Leftrightarrow 4(1-\eta)(\sqrt{1+\eta}-\sqrt{1-\eta})^{2}>\eta^{2} \\
& \Leftrightarrow 8\left(1-\sqrt{1-\eta^{2}}\right) \lambda / \eta^{2}>\lambda /(1-\eta)
\end{aligned}
$$

and we obtain (a). The proofs for (b) and (c) are similar.
Proof of Lemma 4.13. Let $4 / 5>\eta>0$ and $\lambda>0$. First we prove (a) and (b) together. According to Lemma 4.8 part (a), $p_{3}>p_{2}$, therefore $p_{3}=\eta p_{3}+(1-\eta) p_{3}>\eta p_{3}+(1-\eta) \sqrt{p_{2} p_{3}}>\eta p_{2}+(1-\eta) p_{2}=p_{2}$. Next we prove (c). According to Lemma 4.8 part (a), $p_{3}>p_{2}$, therefore $2 \eta\left(\sqrt{p_{3}}-\sqrt{p_{2}}\right) / \sqrt{p_{2}}>0 \Rightarrow\left(1+2 \eta\left(\sqrt{p_{3}}-\sqrt{p_{2}}\right) / \sqrt{p_{2}}\right) p_{3}>p_{3}$. Finally we prove (d). According to Lemma 4.3, we have $4 p_{2}>p_{3}$, therefore $2 \sqrt{p_{2}}>\sqrt{p_{3}} \Leftrightarrow \sqrt{p_{2}}>\sqrt{p_{3}}-\sqrt{p_{2}} \Leftrightarrow 1>\left(\sqrt{p_{3}}-\sqrt{p_{2}}\right) / \sqrt{p_{2}}$. Therefore $(1+2 \eta) p_{3}>\left(1+2 \eta\left(\sqrt{p_{3}}-\sqrt{p_{2}}\right) / \sqrt{p_{2}}\right) p_{3}$.
Proof of Lemma 4.14. Let $\eta>0$ and $\lambda>0$. Define $x \equiv \sqrt{r}$ and $a \equiv$ $\sqrt{\lambda}$ and the expression $r-2 \sqrt{(1+2 \eta) r \lambda /(1+\eta)}+\lambda$ can be restated as $x^{2}-2 a x \sqrt{(1+2 \eta) /(1+\eta)}+a^{2}$ with $x>0$ and $a>0$. The solutions to the quadratic equation $x^{2}-2 a x \sqrt{(1+2 \eta) /(1+\eta)}+a^{2}=0$ for x are $(\sqrt{1+2 \eta}-\sqrt{\eta}) a / \sqrt{1+\eta}$ and $(\sqrt{1+2 \eta}+\sqrt{\eta}) a / \sqrt{1+\eta}$. Thus if $(\sqrt{1+2 \eta}+\sqrt{\eta}) a / \sqrt{1+\eta}>x>(\sqrt{1+2 \eta}-\sqrt{\eta}) a / \sqrt{1+\eta}$, or equivalently, if $(1+3 \eta+2 \sqrt{\eta(1+2 \eta)}) a /(1+\eta)>x^{2}>(1+3 \eta-2 \sqrt{\eta(1+2 \eta)}) a /(1+$ η), then $0>x^{2}-2 a x \sqrt{(1+2 \eta) /(1+\eta)}+a^{2}$. Replacing x by \sqrt{r} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.

Proof of Lemma 4.15. Let $1>\eta>0$ and $\lambda>0$, and we have $\sqrt{1+\eta}>$ $\sqrt{1-\eta}$ and $\sqrt{1+2 \eta}>\sqrt{\eta}$, therefore we have $2 \sqrt{1+\eta}>\sqrt{1+\eta}+$
$\sqrt{1-\eta}$ and $2 \sqrt{1+2 \eta}>\sqrt{1+2 \eta}+\sqrt{\eta}$. By multiplying these inequalities $4 \sqrt{1+2 \eta} \sqrt{1+\eta}>(\sqrt{1+2 \eta}+\sqrt{\eta})(\sqrt{1+\eta}+\sqrt{1-\eta})$. By multiplying $(\sqrt{1+\eta}-\sqrt{1-\eta})$ and dividing $2 \eta \sqrt{1+\eta}$ on both sides we have $2 \sqrt{1+2 \eta}(\sqrt{1+\eta}-\sqrt{1-\eta}) / \eta>(\sqrt{1+2 \eta}+\sqrt{\eta})$. By squaring both sides $(1+2 \eta) p_{3}>(1+3 \eta+2 \sqrt{\eta(1+2 \eta)}) \lambda /(1+\eta)$.

Proof of Lemma 4.16. Note that $f(x)$ is continuous and differentiable over interval $\left[\sqrt{p_{2}}, \sqrt{p_{3}}\right]:$

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-2 \eta x-\sqrt{p_{2}}\left((1-2 \eta)-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-2 \eta-\frac{2 r \sqrt{p_{2}}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{p_{2}}}=-\sqrt{p_{2}}+\frac{r}{\sqrt{p_{2}}}=\frac{1}{\sqrt{p_{2}}}\left(r-p_{2}\right) \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{p_{3}}}=-\sqrt{p_{2}}-2 \eta\left(\sqrt{p_{3}}-\sqrt{p_{2}}\right)+\frac{r \sqrt{p_{2}}}{p_{3}}=\frac{\sqrt{p_{2}}}{p_{3}}\left(r-r_{2}\right)
\end{aligned}
$$

If $r \in\left(0, p_{2}\right]$, then $f(x)$ is decreasing over $\left[\sqrt{p_{2}}, \sqrt{p_{3}}\right]$, therefore $x^{*}=\sqrt{p_{2}}$. If $r \geq r_{2}$, then $f(x)$ is increasing over $\left[\sqrt{p_{2}}, \sqrt{p_{3}}\right]$, therefore $x^{*}=\sqrt{p_{3}}$. If $r \in\left(p_{2}, r_{2}\right)$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{p_{2}}$ and decreasing in the neighborhood below $x=\sqrt{p_{3}}$. Also note that $d^{2} f(x) / d x^{2}<0$, therefore $x^{*} \in$ $\left(\sqrt{p_{2}}, \sqrt{p_{3}}\right)$ that satisfies the first order condition

$$
\begin{equation*}
\left.\frac{d f(x)}{d x}\right|_{x=x^{*}}=0 \Rightarrow 2 \eta\left(x^{*}\right)^{3}+(1-2 \eta) \sqrt{p_{2}}\left(x^{*}\right)^{2}-r \sqrt{p_{2}}=0 \tag{A.1}
\end{equation*}
$$

which is a cubic equation. According to the general formula for roots of cubic equation, $x^{*}=\sqrt{p_{c u}} \in\left(\sqrt{p_{2}}, \sqrt{p_{3}}\right)$.
Proof of Lemma 4.17. Note that $f(x)$ is continuous and differentiable for $x \geq \sqrt{p_{3}}$:

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-\sqrt{p_{1}}\left(1+2 \eta-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-\frac{2 r \sqrt{p_{1}}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{p_{3}}}=\frac{\sqrt{p_{1}}}{p_{3}}\left(r-r_{3}\right) \text { and } \lim _{x \rightarrow+\infty} \frac{d f(x)}{d x}=-(1+2 \eta) \sqrt{p_{1}}<0
\end{aligned}
$$

If $r \in\left(0, r_{3}\right.$], then $f(x)$ is decreasing for $x \geq \sqrt{p_{3}}$, therefore $x^{*}=\sqrt{p_{3}}$. If $r>r_{3}$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{p_{3}}$ and decreasing when x approaches $+\infty$. Also note that $d^{2} f(x) / d x^{2}<0$, therefore $x^{*}>\sqrt{p_{3}}$ that satisfies first order condition $d f(x) /\left.d x\right|_{x=x^{*}}=0 \Rightarrow x^{*}=\sqrt{r /(1+2 \eta)}$.

Proof of Lemma 4.22. Let $\eta>1 / 3$ and $\lambda>0$. Note that

$$
\begin{aligned}
3 \eta>1 & \Leftrightarrow 2 \sqrt{\eta}>\sqrt{1+\eta} \\
& \Leftrightarrow \sqrt{1+\eta}>2(\sqrt{1+\eta}-\sqrt{\eta}) \\
& \Leftrightarrow(1+\eta)(\sqrt{1+\eta}+\sqrt{\eta})^{2}>4 \\
& \Leftrightarrow(1+2 \eta+2 \sqrt{\eta(1+\eta)}) \lambda>4 \lambda /(1+\eta)
\end{aligned}
$$

Proof of Lemma 4.25. Note that $f(x)$ is continuous and differentiable for $x \geq \sqrt{p_{4}}$:

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-\sqrt{p_{1}}\left(1+2 \eta-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-\frac{2 r \sqrt{p_{1}}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{p_{4}}}=\frac{\sqrt{p_{1}}}{p_{4}}\left(r-r_{4}\right) \text { and } \lim _{x \rightarrow+\infty} \frac{d f(x)}{d x}=-(1+2 \eta) \sqrt{p_{1}}<0
\end{aligned}
$$

If $r \in\left(0, r_{4}\right]$, then $f(x)$ is decreasing for $x \geq \sqrt{p_{4}}$, therefore $x^{*}=\sqrt{p_{4}}$. If $r>r_{4}$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{p_{4}}$ and decreasing when x approaches $+\infty$. Note that $d^{2} f(x) / d x^{2}<0$, therefore $x^{*}>\sqrt{p_{4}}$ satisfies first order condition $d f(x) /\left.d x\right|_{x=x^{*}}=0 \Rightarrow x^{*}=\sqrt{r /(1+2 \eta)}$.
Proof of Lemma 4.26. Let $\eta>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
& \sqrt{\eta}(\sqrt{1+2 \eta}-\sqrt{1+\eta})+\eta>0 \Leftrightarrow 0>-\sqrt{\eta} \sqrt{1+2 \eta}+\sqrt{\eta} \sqrt{1+\eta}-\eta \\
& \quad \Leftrightarrow \sqrt{1+2 \eta} \sqrt{1+\eta}>(\sqrt{1+2 \eta}+\sqrt{\eta})(\sqrt{1+\eta}-\sqrt{\eta}) \\
& \quad \Leftrightarrow(\sqrt{1+\eta}+\sqrt{\eta}) \sqrt{1+2 \eta}>(\sqrt{1+2 \eta}+\sqrt{\eta}) / \sqrt{1+\eta}
\end{aligned}
$$

by squaring both sides we have $(1+2 \eta) p_{4}>(1+3 \eta+2 \sqrt{\eta(1+2 \eta)}) \lambda /(1+\eta)$. . Proof of Lemma 5.2. Let $1>\bar{\eta}>0$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate the expression $\bar{\eta} p / 2+2 \sqrt{(1-\bar{\eta}) p \lambda}-\lambda$ as $\bar{\eta} x^{2} / 2+2 a x \sqrt{(1-\bar{\eta})}-a^{2}$ with $x>0$ and $a>0$. The solutions to the quadratic equation $\bar{\eta} x^{2} / 2+$ $2 a x \sqrt{(1-\bar{\eta})}-a^{2}=0$ for x are $0>-2(\sqrt{1-\bar{\eta} / 2}+\sqrt{1-\bar{\eta}}) a / \bar{\eta}$ and $2(\sqrt{1-\bar{\eta} / 2}-\sqrt{1-\bar{\eta}}) a / \bar{\eta}>0$. Therefore if $2(\sqrt{1-\bar{\eta} / 2}-\sqrt{1-\bar{\eta}}) a / \bar{\eta}>$ $x>0$, or equivalently, $4(\sqrt{1-\bar{\eta} / 2}-\sqrt{1-\bar{\eta}})^{2} a^{2} / \bar{\eta}^{2}>x^{2}>0$, then $0>$
$\bar{\eta} x^{2} / 2+2 a x \sqrt{(1-\bar{\eta})}-a^{2}$. Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.

Proof of Lemma 5.3. Let $1>\bar{\eta}>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
0>\bar{\eta}^{2}-2 \bar{\eta} & \Leftrightarrow \bar{\eta}^{2}-4 \bar{\eta}+4>2 \bar{\eta}^{2}-6 \bar{\eta}+4 \\
& \Leftrightarrow(2-\bar{\eta})^{2}>4(1-\bar{\eta} / 2)(1-\bar{\eta}) \\
& \Leftrightarrow 2-\bar{\eta}>2 \sqrt{1-\bar{\eta} / 2} \sqrt{1-\bar{\eta}} \\
& \Leftrightarrow \bar{\eta}>2 \sqrt{1-\bar{\eta} / 2} \sqrt{1-\bar{\eta}}-2(1-\bar{\eta}) \\
& \Leftrightarrow 1 / \sqrt{1-\bar{\eta}}>2(\sqrt{1-\bar{\eta} / 2}-\sqrt{1-\bar{\eta}}) / \bar{\eta} \\
& \Leftrightarrow \lambda /(1-\bar{\eta})>4(\sqrt{1-\bar{\eta} / 2}-\sqrt{1-\bar{\eta}})^{2} \lambda / \bar{\eta}^{2}
\end{aligned}
$$

Proof of Lemma 5.4. Let $2>\bar{\eta}>0$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate the expression $(1-\bar{\eta} / 2) p-2 \sqrt{p \lambda}+\lambda$ as $(1-\bar{\eta} / 2) x^{2}-2 a x+a^{2}$ with $x>0$ and $a>0$. The solutions to the quadratic equation $(1-\bar{\eta} / 2) x^{2}-$ $2 a x+a^{2}=0$ for x are $\sqrt{2} a /(\sqrt{2}+\sqrt{\bar{\eta}})>0$ and $\sqrt{2} a /(\sqrt{2}-\sqrt{\bar{\eta}})>0$. Therefore if $\sqrt{2} a /(\sqrt{2}-\sqrt{\bar{\eta}})>x>\sqrt{2} a /(\sqrt{2}+\sqrt{\bar{\eta}})$, or equivalently, $2 a^{2} /(2+\bar{\eta}-2 \sqrt{2 \bar{\eta}})>x^{2}>2 a^{2} /(2+\bar{\eta}+2 \sqrt{2 \bar{\eta}})$, then $0>(1-\bar{\eta} / 2) x^{2}-$ $2 a x+a^{2}$. Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.
Proof of Lemma 5.5. Let $\bar{\eta}>0$ and $\lambda>0$, then $1+\sqrt{2 \bar{\eta}}>0 \Leftrightarrow 2+\sqrt{2 \bar{\eta}}>1 \Leftrightarrow$ $\sqrt{2}>1 /(\sqrt{2}+\sqrt{\bar{\eta}}) \Leftrightarrow 4 \lambda>2 \lambda /(2+\bar{\eta}+2 \sqrt{2 \bar{\eta}})$.

Proof of Lemma 5.6. Let $8 / 9>\bar{\eta}>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
8 \bar{\eta}-9 \bar{\eta}^{2}>0 & \Leftrightarrow 2 \sqrt{2 \bar{\eta}}>3 \bar{\eta} \\
& \Leftrightarrow 2-2 \bar{\eta}>2+\bar{\eta}-2 \sqrt{2 \bar{\eta}} \\
& \Leftrightarrow \sqrt{2} \sqrt{1-\bar{\eta}}>\sqrt{2}-\sqrt{\bar{\eta}} \\
& \Leftrightarrow \sqrt{2} /(\sqrt{2}-\sqrt{\bar{\eta}})>1 / \sqrt{1-\bar{\eta}} \\
& \Leftrightarrow 2 \lambda /(2+\bar{\eta}-2 \sqrt{2 \bar{\eta}})>\lambda /(1-\bar{\eta})
\end{aligned}
$$

and we obtain (a). The proofs for (b) and (c) are similar.

Proof of Lemma 5.7. Let $1>\bar{\eta}>0$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate expression $\bar{\eta} p / 2-2(1-\sqrt{1-\bar{\eta}}) \sqrt{p \lambda}$ as $\bar{\eta} x^{2} / 2-2(1-\sqrt{1-\bar{\eta}}) a x$ with $x>0$ and $a>0$. The solution to the quadratic equation $\bar{\eta} x^{2} / 2-$ $2(1-\sqrt{1-\bar{\eta}}) a x=0$ for x are 0 and $4(1-\sqrt{1-\bar{\eta}}) a / \bar{\eta}>0$. Therefore if $4(1-\sqrt{1-\bar{\eta}}) a / \bar{\eta}>x>0$, or equivalently, $16(2-\bar{\eta}-2 \sqrt{1-\bar{\eta}}) a^{2} / \bar{\eta}^{2}>$ $x^{2}>0$, then $0>\bar{\eta} x^{2} / 2-2(1-\sqrt{1-\bar{\eta}}) a x$. Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.

Proof of Lemma 5.8. Let $8 / 9>\bar{\eta}>0$ and $\lambda>0$, then we have

$$
\begin{aligned}
0>9 \bar{\eta}^{2}-8 \bar{\eta} & \Leftrightarrow 16(1-\bar{\eta})>9 \bar{\eta}^{2}-24 \bar{\eta}+16 \\
& \Leftrightarrow 4 \sqrt{1-\bar{\eta}}>4-3 \bar{\eta} \\
& \Leftrightarrow 4(1-\sqrt{1-\bar{\eta}}) / \bar{\eta}>1 / \sqrt{1-\bar{\eta}} \\
& \Leftrightarrow 16(2-\bar{\eta}-2 \sqrt{1-\bar{\eta}})^{2} \lambda / \bar{\eta}^{2}>\lambda /(1-\bar{\eta})
\end{aligned}
$$

and we obtain (a). The proofs for (b) and (c) are similar.
Proof of Lemma 5.9. Let $1>\bar{\eta}>0$ and $\lambda>0$, then $1>\sqrt{1-\bar{\eta}} \Leftrightarrow \bar{\eta}>$ $2 \sqrt{1-\bar{\eta}}-2+2 \bar{\eta} \Leftrightarrow 4 \lambda /(1-\bar{\eta})>16(2-\bar{\eta}-2 \sqrt{1-\bar{\eta}}) \lambda / \bar{\eta}^{2}$. Also note that $1>\sqrt{1-\bar{\eta}} \Leftrightarrow 2-\bar{\eta}-2 \sqrt{1-\bar{\eta}}>0 \Leftrightarrow 2(1-\sqrt{1-\bar{\eta}})>\bar{\eta} \Leftrightarrow$ $16(2-\bar{\eta}-2 \sqrt{1-\bar{\eta}}) \lambda / \bar{\eta}^{2}>4 \lambda$.

Proof of Lemma 5.14. Let $8 / 9>\bar{\eta}>0$ and $\lambda>0$. According to Lemma 5.8 and 5.9, $4 \bar{p}_{1}>\bar{p}_{2}>\bar{p}_{1}$, therefore:

$$
\begin{aligned}
2 \sqrt{\overline{\bar{p}}_{1}}>\sqrt{\overline{\bar{p}}_{2}} & \Leftrightarrow \sqrt{\overline{\bar{p}}_{1}}>\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}>0 \\
& \Leftrightarrow 1>\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right) / \sqrt{\bar{p}_{1}} \\
& \Leftrightarrow \bar{\eta}>\bar{\eta}\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right) / \sqrt{\bar{p}_{1}} \\
& \Leftrightarrow 1>(1-\bar{\eta})+\bar{\eta}\left(\sqrt{\bar{p}_{2}}-\sqrt{\overline{\bar{p}}_{1}}\right) / \sqrt{\bar{p}_{1}} \\
& \Leftrightarrow \bar{p}_{2}>(1-\bar{\eta}) \bar{p}_{2}+\bar{\eta}_{2}\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right) / \sqrt{\bar{p}_{1}}
\end{aligned}
$$

Since $\bar{\eta} \bar{p}_{2}+(1-\bar{\eta}) \sqrt{\bar{p}_{1} \bar{p}_{2}}-\overline{\eta p_{2}} \sqrt{\bar{p}_{2}} / 2\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right)=(1-\bar{\eta}) \sqrt{\bar{p}_{1} \bar{p}_{2}}+$ $\overline{\eta p_{2}}\left(\sqrt{\bar{p}_{2}}-\sqrt{4 \bar{p}_{1}}\right) / 2\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right)$. Since $4 \bar{p}_{1}>\bar{p}_{2}>\bar{p}_{1}$, therefore we have $(1-\bar{\eta}) \bar{p}_{2}>(1-\bar{\eta}) \sqrt{\bar{p}_{1} \bar{p}_{2}}$ and $\overline{\eta p_{2}}\left(\sqrt{\bar{p}_{2}}-\sqrt{\overline{p_{1}}}\right) / \sqrt{\bar{p}_{1}}>0>$
$\overline{\eta \bar{p}_{2}}\left(\sqrt{\overline{\bar{p}}_{2}}-\sqrt{4 \bar{p}_{1}}\right) / 2\left(\sqrt{\overline{\bar{p}}_{2}}-\sqrt{\overline{p_{1}}}\right)$. Thus $(1-\bar{\eta}) \bar{p}_{2}+\overline{\eta \bar{p}_{2}}\left(\sqrt{\bar{p}_{2}}-\sqrt{\overline{\bar{p}}_{1}}\right) / \sqrt{\overline{\bar{p}}_{1}}>$ $\bar{\eta}_{2}+(1-\bar{\eta}) \sqrt{\bar{p}_{1} \bar{p}_{2}}-\bar{\eta}_{2} \sqrt{\bar{p}_{2}} / 2\left(\sqrt{\bar{p}_{2}}-\sqrt{\overline{\bar{p}}_{1}}\right)$. Therefore we obtain (a). According to Lemma 5.8, $\bar{p}_{2}>\bar{p}_{1}$, therefore $(1-\bar{\eta})\left(\bar{p}_{2}-\bar{p}_{1}\right)+\overline{\eta \bar{p}_{2}}\left(\sqrt{\overline{\bar{p}}_{2}}-\sqrt{\bar{p}_{1}}\right) / \sqrt{\bar{p}_{1}}>$ $0 \Leftrightarrow(1-\bar{\eta}) \bar{p}_{2}+\bar{\eta}_{2}\left(\sqrt{\bar{p}_{2}}-\sqrt{\bar{p}_{1}}\right) / \sqrt{\bar{p}_{1}}>(1-\bar{\eta}) \bar{p}_{1}=\lambda$. Therefore we obtain (b).

Proof of Lemma 5.15. Note that $f(x)$ is continuous and differentiable over interval $\left[\sqrt{\bar{p}_{1}}, \sqrt{\bar{p}_{2}}\right]:$

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-\bar{\eta} x-\sqrt{\bar{p}_{1}}\left((1-2 \bar{\eta})-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-\bar{\eta}-\frac{2 r \sqrt{\bar{p}_{1}}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{\bar{p}_{1}}}=-(1-\bar{\eta}) \sqrt{\bar{p}_{1}}+\frac{r}{\sqrt{\bar{p}_{1}}}=\frac{1}{\sqrt{\bar{p}_{1}}}(r-\lambda) \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{\bar{p}_{2}}}=-\bar{\eta} \sqrt{\bar{p}_{2}}-(1-2 \bar{\eta}) \sqrt{\bar{p}_{1}}+\frac{r \sqrt{\bar{p}_{1}}}{\bar{p}_{2}}=\frac{\sqrt{\bar{p}_{1}}}{\bar{p}_{2}}\left(r-\bar{r}_{2}\right)
\end{aligned}
$$

If $r \in(0, \lambda]$, then $f(x)$ is decreasing over $\left[\sqrt{\bar{p}_{1}}, \sqrt{\bar{p}_{2}}\right]$, therefore $x^{*}=\sqrt{\bar{p}_{1}}$. If $r \geq \bar{r}_{2}$, then $f(x)$ is increasing over $\left[\sqrt{\bar{p}_{1}}, \sqrt{\bar{p}_{2}}\right]$, therefore $x^{*}=\sqrt{\bar{p}_{2}}$. If $r \in\left(\lambda, \bar{r}_{2}\right)$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{\bar{p}_{1}}$ and is decreasing in the neighborhood below $x=\sqrt{\bar{p}_{2}}$. Also note that $d^{2} f(x) / d x^{2}<0$, therefore $x^{*} \in$ $\left(\sqrt{\bar{p}_{1}}, \sqrt{\bar{p}_{2}}\right)$ that satisfies the first order condition

$$
\begin{equation*}
\left.\frac{d f(x)}{d x}\right|_{x=x^{*}}=0 \Rightarrow \bar{\eta}\left(x^{*}\right)^{3}+(1-2 \bar{\eta}) \sqrt{\bar{p}_{1}}\left(x^{*}\right)^{2}-r \sqrt{\bar{p}_{1}}=0 \tag{A.2}
\end{equation*}
$$

which is a cubic equation. According to the general formula for roots of cubic equation, $x^{*}=\sqrt{\bar{p}_{c u}} \in\left(\sqrt{\bar{p}_{1}}, \sqrt{\overline{p_{2}}}\right)$.
Proof of Lemma 5.16. Note that $f(x)$ is continuous and differentiable for $x \geq \sqrt{\bar{p}_{2}}$:

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-\sqrt{\lambda}\left(1-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-\frac{2 r \sqrt{\lambda}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{\bar{p}_{2}}}=\frac{\sqrt{\lambda}}{\bar{p}_{2}}\left(r-\bar{p}_{2}\right) \text { and }\left.\frac{d f(x)}{d x}\right|_{x \rightarrow+\infty}=-\sqrt{\lambda}<0
\end{aligned}
$$

If $r \in\left(0, \bar{p}_{2}\right]$, then $f(x)$ is decreasing for $r \geq \sqrt{\bar{p}_{2}}$, therefore $x^{*}=\sqrt{\bar{p}_{2}}$. If $r>\sqrt{\overline{\bar{p}}_{2}}$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{\overline{p_{2}}}$. Since $f(x)$ is decreasing as $x \rightarrow+\infty$ and since $f(x)$ is concave $\left(d^{2} f(x) / d x^{2}<0\right)$, therefore $x^{*}>\sqrt{\bar{p}_{2}}$ is solved from first order condition $d f(x) /\left.d x\right|_{x=x^{*}}=0 \Rightarrow x^{*}=\sqrt{r}$.

Proof of Lemma 5.18. Let $2>\bar{\eta} \geq 8 / 9$ and $\lambda>0$, then we have

$$
\begin{aligned}
2 \bar{\eta} \geq 16 / 9 & \Leftrightarrow \sqrt{2 \bar{\eta}} \geq 4 / 3>1 \\
& \Leftrightarrow 1>2-\sqrt{2 \bar{\eta}} \\
& \Leftrightarrow \sqrt{2} /(\sqrt{2}-\sqrt{\bar{\eta}})>2 \\
& \Leftrightarrow 2 \lambda /(2+\bar{\eta}-2 \sqrt{2 \bar{\eta}})>4 \lambda
\end{aligned}
$$

Proof of Lemma 5.21. Note that $f(x)$ is continuous and differentiable for $x \geq \sqrt{\overline{p_{3}}}$:

$$
\begin{aligned}
& \frac{d f(x)}{d x}=-\sqrt{\lambda}\left(1-\frac{r}{x^{2}}\right) \text { and } \frac{d^{2} f(x)}{d x^{2}}=-\frac{2 r \sqrt{\lambda}}{x^{3}}<0 \\
& \left.\frac{d f(x)}{d x}\right|_{x=\sqrt{\bar{p}_{3}}}=\frac{\sqrt{\lambda}}{\bar{p}_{3}}\left(r-\bar{p}_{3}\right) \text { and }\left.\frac{d f(x)}{d x}\right|_{x \rightarrow+\infty}=-\sqrt{\lambda}<0
\end{aligned}
$$

If $r \in\left(0, \bar{p}_{3}\right]$, then $f(x)$ is decreasing for $x \geq \sqrt{\overline{p_{3}}}$, therefore $x^{*}=\sqrt{\overline{p_{3}}}$. If $r>\sqrt{\bar{p}_{3}}$, then $f(x)$ is increasing in the neighborhood above $x=\sqrt{\bar{p}_{3}}$. Since $f(x)$ is decreasing as $x \rightarrow+\infty$ and since $f(x)$ is concave $\left(d^{2} f(x) / d x^{2}<0\right)$, therefore $x^{*}>\sqrt{\bar{p}_{3}}$ is solved from first order condition $d f(x) /\left.d x\right|_{x=x^{*}}=0 \Rightarrow x^{*}=\sqrt{r}$.
Proof of Lemma 5.23. Let $\bar{\eta}>2$ and $\lambda>0$. Define $x \equiv \sqrt{p}$ and $a \equiv \sqrt{\lambda}$ and restate the expression $(1-\bar{\eta} / 2) p-2 \sqrt{p \lambda}+\lambda$ as $(1-\bar{\eta} / 2) x^{2}-2 a x+a^{2}$ with $x>0$ and $a>0$. The solutions to the quadratic equation $(1-\bar{\eta} / 2) x^{2}-2 a x+$ $a^{2}=0$ for x are $\sqrt{2} a /(\sqrt{2}+\sqrt{\bar{\eta}})>0$ and $0>\sqrt{2} a /(\sqrt{2}-\sqrt{\bar{\eta}})$. Therefore if $\sqrt{2} a /(\sqrt{2}+\sqrt{\bar{\eta}})>x>0$, or equivalently, $2 a^{2} /(2+\bar{\eta}+2 \sqrt{2 \bar{\eta}})>x^{2}>0$, then $(1-\bar{\eta} / 2) x^{2}-2 a x+a^{2}>0$. Replacing x by \sqrt{p} and a by $\sqrt{\lambda}$ we obtain (a). The proofs for (b) and (c) are similar.

